A conjecture on subset sums of a finite set of positive integers
نویسنده
چکیده
منابع مشابه
On Silverman's conjecture for a family of elliptic curves
Let $E$ be an elliptic curve over $Bbb{Q}$ with the given Weierstrass equation $ y^2=x^3+ax+b$. If $D$ is a squarefree integer, then let $E^{(D)}$ denote the $D$-quadratic twist of $E$ that is given by $E^{(D)}: y^2=x^3+aD^2x+bD^3$. Let $E^{(D)}(Bbb{Q})$ be the group of $Bbb{Q}$-rational points of $E^{(D)}$. It is conjectured by J. Silverman that there are infinitely many primes $p$ for which $...
متن کاملInverse theorems and the number of sums and products ∗
Let > 0. Erdős and Szemerédi conjectured that if A is a set of k positive integers which large k, there must be at least k2−ε integers that can be written as the sum or product of two elements of A. We shall prove this conjecture in the special case that the number of sums is very small. 1 A conjecture of Erdős and Szemerédi Let A be a nonempty, finite set of positive integers, and let |A| deno...
متن کاملFinite groups admitting a connected cubic integral bi-Cayley graph
A graph is called integral if all eigenvalues of its adjacency matrix are integers. Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$. In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.
متن کاملThe Inverse Problem on Subset Sums, II
For a set T of integers, let P (T ) be the set of all finite subset sums of T , and let T (x) be the set of all integers of T not exceeding x. Let B = {b1 < b2 < · · · } be a sequence of integers and d1 = 10, d2 = 3b1 + 4, and dn = 3bn−1 + 2 (n ≥ 3). In this paper, we prove that (i) if bn > dn for all n ≥ 1, then there exists a sequence of positive integers A = {a1 < a2 < · · · } such that, for...
متن کاملSome difference results on Hayman conjecture and uniqueness
In this paper, we show that for any finite order entire function $f(z)$, the function of the form $f(z)^{n}[f(z+c)-f(z)]^{s}$ has no nonzero finite Picard exceptional value for all nonnegative integers $n, s$ satisfying $ngeq 3$, which can be viewed as a different result on Hayman conjecture. We also obtain some uniqueness theorems for difference polynomials of entire functions sharing one comm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 31 شماره
صفحات -
تاریخ انتشار 2005